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This project is unmaintained and the checkpoint functionality has been migrated to the checkpointing project.

Contents: 1
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CHAPTER 1

Assist small-scale machine learning.

learning-utility is a package of utilities for small-scale machine learning tasks with scikit-learn.

1.1 Installation

pip install Lutil

1.2 Key Features

1.2.1 Cache Intermediate Results

InlineCheckpoint can cache the computation result in the first call. Since then, if nothing has changed, it
retrieves the cache and skips computation.

Suppose you have such a .py file.

from Lutil.checkpoints import InlineCheckpoint

a, b = 1, 2
with InlineCheckpoint(watch=["a", "b"], produce=["c"]):

print("Heavy computation.")
c = a + b

(continues on next page)

3
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(continued from previous page)

print(c)

Run the script, you will get:

Heavy computation.
3

Run this script again, the with-statement will be skipped. You will get:

3

Once a value among watch changes or the code inside the with-statement changes, re-calculation takes place to
ensure the correct output.

Please check out the details for InlineCheckpoint.

1.2.2 Save Prediction Result According to the Given Format

Lots of machine learning competitions require a .csv file in a given format. Most of them provide an example file.

In example.csv:

id, pred
1, 0.25
2, 0.45
3, 0.56

Run:

>>> import numpy as np
>>> from Lutil.dataIO import AutoSaver

>>> result = np.array([0.2, 0.4, 0.1, 0.5])
# Typical output of a scikit-learn predictor

>>> ac = AutoSaver(save_dir="somedir", example_path="path/to/example.csv")
>>> ac.save(result, "some_name.csv")

Then in your somedir/some_name.csv:

id, pred
1, 0.2
2, 0.4
3, 0.1
4, 0.5

It also works if the result is a pandas DataFrame, Series, 2-dim numpy array, etc. Also, the encoding, seperator,
header, index of the example.csv will all be recognized.

Please check out the details for AutoSaver.

checkpoints: Cache Intermediate Results

There are usually some intermediate results when doing machine learning tasks. For example, the data after prepro-
cessing. This module is useful for caching them on the disk, and skip re-calculation when is called afterwards.

4 Chapter 1. Assist small-scale machine learning.
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Note: The cache files will be stored in your ./.Lutil-checkpoint directory, if you want to clean the cache, just delete
it. You might also want to add this directory to your .gitignore.

Contents

• checkpoints: Cache Intermediate Results

– InlineCheckpoint, the Context Manager

* Basic Example

* Condition of Re-computation

* Format of Watch and Produce

* Watching a Complex Object

– checkpoint, the Decorator

* Basic Example

* Condition of Re-computation

* Force Recomputation

* Ignore Some Parameters

* Complex Object as a Parameter

* See Also

InlineCheckpoint, the Context Manager

InlineCheckpoint is a context manager. It caches the output produced within the with-statement. When the
script is executed later with the same condition, the cache is retrieved thus avoiding re-computation.

It is fully compatible with the jupyter notebook, and is often useful when using it for machine learning.

class Lutil.checkpoints.InlineCheckpoint(*, watch, produce)

Parameters

• watch (list or tuple) – List of names of variables used to identify a computing
context

• produce (list or tuple) – List of names of variables whose values are generated
within the with-statement

Basic Example

We have provided the simplest example in the welcome page, here is a more practical one.

Suppose you have such a .py file.

from Lutil.checkpoints import InlineCheckpoint

import numpy as np
(continues on next page)

1.2. Key Features 5
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(continued from previous page)

from sklearn.decomposition import PCA

np.random.seed(0) # If random seed is not set, data will change
→˓every time
data = np.random.randn(10000, 1000) # Simulate a large dataset
pca = PCA(20) # A typical scikit-learn transformer

with InlineCheckpoint(watch=["data", "pca"], produce=["data_t"]):
data_t = pca.fit_transform(data)
print("A thousand years later.")

print(data_t.shape)

Run the script, you will get:

A thousand years later.
(10000, 20)

Run this script again, the with-statement will be skipped. But the produce will be retrieved from cache, you will
get:

(10000, 20)

Condition of Re-computation

If the variables or objects you watched have changed, for example, the data or the parameter for the scikit-learn
transformer, code in the with-statement will be executed to retrieve the correct result.

For instance, if you replace pca = PCA(20) with pca = PCA(50) and run the script again, you will get:

A thousand years later.
(10000, 50)

The code in the with-statement is also monitored to detect whether the condition has changed.

For example, if you replace data_t = pca.fit_transform(data) with data_t = data The re-
computation will be executed:

A thousand years later.
(10000, 1000)

Thus, please make sure that everything affecting the computation result is included in the watch.

Important: If you are watching the transformation result of a scikit-learn transformer. Make sure to set the trans-
former’s random_state parameter if it has one. Otherwise it will vary each time, and be considered a different
computation context. Thus the with-statement will not be skipped.

Format of Watch and Produce

Basically, the items in the watch/produce list shoule be valid variable names in Python.

The watch and produce can also be attributes of some object, using the . syntax.

6 Chapter 1. Assist small-scale machine learning.
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This works:

class Foo: pass

f = Foo()
f.a = 1

with InlineCheckpoint(watch=["f.a"], produce=["f.b"]):
f.b = f.a

print(f.b)

However, the slice syntax is not yet supported. This will cause error:

d = {'a':1}

with InlineCheckpoint(watch=["d['a']"], produce=["d['b']"]):
d['b'] = d['a']

Caution: Because of some limitation of python magic we used to skip the code block and load the cached data,
InlineCheckpoint to produce variables is not supported within a function or method.

This will not work!

def func(a):
with InlineCheckpoint(watch=["a"], produce=["b"]):

b = a
return b

However, producing attributes of an object works well:

def func(a):
f = Foo()
with InlineCheckpoint(watch=["a"], produce=["f.b"]):

f.b = a
return f.b

Nevertheless, checkpoint as a decorator is recommended for a function. Besides, if you use this, the return statement
should not be included in the with-statement.

Watching a Complex Object

If the object you are watching has some attributes, which are neither basic data types nor pd.DataFrame/np.ndarray,
a warning will be raised. It is not recommended to do so. Instead, explicitly watch those attributes which affects the
computation, using the . syntax.

class Bar: pass
f = Foo()
f.bar = Bar()

with InlineCheckpoint(watch=["f"], produce=["f.a"]):
f.a = 1

will give you:

1.2. Key Features 7
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ComplexParamsIdentifyWarning: A complicated object is an attribute of <__main__.Foo
→˓object at 0x000001CE66E897B8>,
it may cause mistake when detecting whether there is checkpoint for this call.

checkpoint, the Decorator

checkpoint is a decorator which cache the return value of a function or method on the disk. When the function is
called later with the same condition, retrieve the cached value and return, avoiding re-computation.

@Lutil.checkpoints.checkpoint

@Lutil.checkpoints.checkpoint(ignore=[])

Parameters ignore (list or tuple) – Optional, list of names of variables ignored when
identifying a computing context

Basic Example

Suppose you have such a .py file:

from Lutil.checkpoints import checkpoint

@checkpoint
def foo(a, b):

print("Heavy computation.")
return a + b

print(foo(1, 2))
print(foo(1, 2))

Run this script, you will get:

Heavy computation.
3
3

In the second call of foo, the computation is skipped, and the return value is retrieved from cache.

In machine learning tasks, the parameters are often pd.DataFrame or np.ndarray, checkpoint works well on them.

Condition of Re-computation

If the parameter of the function have changed, the function will be called again to retrieve the correct result.

In the previous example, add a new function call

print(foo(1, 3))

You will get:

Heavy computation.
4

8 Chapter 1. Assist small-scale machine learning.
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If the code of the function have changed, re-computation takes place as well.

In the previous example, change the function definition from return a + b to return a - b, and call
print(foo(1, 2)) again, you will get:

Heavy computation.
-1

Important: If some parameter of the decorated function is the transformation result of a scikit-learn transformer.
Make sure to set the transformer’s random_state parameter if it has one. Otherwise it will vary each time, and be
considered a different computation context. Thus the decorated function will not be skipped.

Force Recomputation

Sometimes you want to arbitrarily rerun a function and recompute the result, probably because some files you
read inside the function is changed, which requires recompute but can not be identified by default. You can add
__recompute__=True parameter to the function call to force recomputation.

print(foo(1, 2, __recompute__=True))
print(foo(1, 2, __recompute__=True))

You will get:

Heavy computation.
3
Heavy computation.
3

The second function call is forced to recompute.

Ignore Some Parameters

By default, checkpoint monitors all the parameters of the decorated function. However, the ignore parameter
can be used if some of them are not contributing to the return value.

@checkpoint(ignore=["useless"])
def bar(a, useless):

print("Runned.")
return a + 1

print(bar(1, True))
print(bar(1, False))

Althought the value of useless have changed, there will be no re-computation. You will get:

Runned.
2
2

1.2. Key Features 9
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Complex Object as a Parameter

If some parameters of the decorated function are neither basic data types nor pd.DataFrame/np.ndarray, a warning will
be raised. It is not recommended to do so.

@checkpoint
def func(foo):

return foo

class Foo: pass
f = Foo()
f.foo = Foo()

func(foo)

You will get:

ComplexParamsIdentifyWarning: A complicated object is an attribute of <__main__.Foo
→˓object at 0x00000224A1575358>,
it may cause mistake when detecting whether there is checkpoint for this call.

See Also

joblib.Memory is similar to our checkpoint decorator. It is more powerful, while ours is more concise.

However, joblib is not providing anything similar to our InlineCheckpoint, while this is often necessary in
some jupyter notebook based solutions. This is also the motivation of this module.

Another important difference is that, if the code of the function changes, joblib.Memory only caches the result of
the latest function version.

from joblib import Memory
memory = Memory("dir", verbose=0)

@memory.cache
def f(x):

print('Running.')
return x

f(1)

Run this, you get:

Running.

If you change print('Running.') to print('Running again.)', you will get:

Running again.

Now, if you change it back to print('Running'), it will not retrieve the result in the first run. Instead, the
computation happens again:

Running.

However, if you are using our checkpoint.

10 Chapter 1. Assist small-scale machine learning.
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from Lutil.checkpoints import checkpoint

@checkpoint
def f(x):

print('Running.')
return x

Do the similar thing, and in the third run, the computation will be skipped. The result in the first run will be retrieved.

dataIO: Read Data, Save Result

Contents

• dataIO: Read Data, Save Result

– AutoSaver, Auto-format and Save Prediction Results

* Auto-format Examples

* Log Memo for the Results

* Arbitrarily Using Keyword Arguments

– DataReader, Raw Data Management

* Basic Examples

* Accessing Multiple Datasets

* Using other Reading Function

AutoSaver, Auto-format and Save Prediction Results

In some machine learning competitions, like kaggle, a .csv file is required for result submission. Its format is usually
illustrated in an example file. AutoSaver inspects the required format from the example, and save your result.

class Lutil.dataIO.AutoSaver(save_dir="", example_path=None, **default_kwargs)

Parameters

• save_dir (str) – Directory where your results will be saved

• example_path (str) – Optional, path to the example .csv file

• default_kwargs – Default keyword arguments arbitrarily used for DataFrame.to_csv()

Autosaver.save(self, X, filename, memo=None, **kwargs)

Parameters

• X (pd.DataFrame, pd.Series or np.ndarray) – The prediction result to be
saved

• filename (str) – Optional, the filename of the result file. Will use datetime.
datetime.now().strftime(r"%m%d-%H%M%S") + ".csv" if left empty

• memo (str) – Optional, the memo logged for this result

• kwargs – Other keyword arguments arbitrarily used for DataFrame.to_csv()

1.2. Key Features 11
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Auto-format Examples

We have provided the simplest example in the welcome page. More format and data types can be inferred.

For example, if the index in the example starts from zero and there is no headers

0, 0.1
1, 0.1
2, 0.1

Run:

>>> import numpy as np
>>> from Lutil.dataIO import AutoSaver

>>> result = np.array([0.2, 0.4, 0.1, 0.5])
# Typical output of a scikit-learn predictor

>>> ac = AutoSaver(save_dir="somedir", example_path="path/to/example.csv")
>>> ac.save(result, "some_name.csv")

Then in your somedir/some_name.csv:

0, 0.2
1, 0.4
2, 0.1
3, 0.5

Some competitions use a hash-like value as the index. For instance, in your example.csv:

hash, value
aaffc2, 0.1
spf2oa, 0.1
as2nw2, 0.1

Then you should include the index in the X parameter. However, how you achieve this is quite at will.

>>> import numpy as np
>>> import pandas as pd
>>> from Lutil.dataIO import AutoSaver

>>> index = ["aaffc2", "spf2oa", "as2nw2", "wn2ajn"]
>>> pred = np.array([0.2, 0.4, 0.1, 0.5])

>>> # In either of the four ways:
>>> result = pd.Series(pred, index=index)
>>> result = pd.DataFrame({
... "ix": index,
... "pred": pred
... })
>>> result = pd.DataFrame({"pred":pred}, index=index)
>>> result = np.array([index, pred]).T

>>> ac = AutoSaver(save_dir="somedir", example_path=r"explore\doctests\example.csv")
>>> ac.save(result, "some_name.csv")

In your somedir/some_name.csv, the results will be perfectly saved:

12 Chapter 1. Assist small-scale machine learning.

../index.html#save-prediction-result-according-to-the-given-format


learning-utility, Release 0.1.10

hash,value
aaffc2,0.2
spf2oa,0.4
as2nw2,0.1
wn2ajn,0.5

As long as the object you are saving is a numpy.ndarray or a pd.Series/pd.DataFrame, and it “looks like” the final csv
file according to the example, the auto-format will work.

Log Memo for the Results

Sometimes you would like a memo, a description for the results you have saved. Then you can use the memo parameter
in the AutoSaver.save method.

>>> result1 = np.array([0.2, 0.4, 0.1, 0.5])
>>> result2 = np.array([0.2, 0.3, 0.1, 0.6])

>>> ac = AutoSaver(save_dir="somedir", example_path="path/to/example.csv")

>>> ac.save(result1, "result1.csv", memo="Using Random Forest.")
>>> ac.save(result2, "result2.csv", memo="Using XGBoost.")

Then you will find this in your somedir/memo.txt:

result1.csv: Using Random Forest.
result2.csv: Using XGBoost.

All the new memos will be appended to the end of memo.txt.

Arbitrarily Using Keyword Arguments

If the format in your example.csv is too complex and AutoSaver failed to inspect that, you can also pass a pan-
das.Series or pandas.DataFrame to the save method, and arbitrarily assign arguments to use its to_csv method.

It is true that this is not very meaningful, comparing with directly calling DataFrame.to_csv, except that it gives
you the access to our “memo” feature, and only have to set the parameters once while saving multiple results.

For example:

>>> df = pd.DataFrame({
... "ix":[1,2,3],
... "pred":[0.1,0.2,0.3]
... })

>>> ac = AutoSaver(save_dir="somedir", index=False)
>>> ac.save(df, "result1.csv")

This is equivalent to:

>>> df.to_csv("somedir/result1.csv", index=False)

You can also add more arguments when calling save:

>>> ac.save(df, "result2.csv", header=True)

1.2. Key Features 13
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Both the keyword arguments assigned when initializing and when calling save will be applied, which is equivalent
to:

>>> df.to_csv("somedir/result2.csv", index=True, header=True)

When you use arbitrary arguments, you cannot use the example_path feature. They contradicts each other.

DataReader, Raw Data Management

If you want to read the dataset multiple times or across modules, it can be boring to copy-paste your pd.read_csv()
statement. DataReader is a dataset manager which allows you to set the reading parameter only once, and get the
dataset anytime after without more effort.

class Lutil.dataIO.DataReader(train_path=None, test_path=None, val_path=None,
_id="default", read_func=None, **read_kwargs)

Parameters

• train_path (str) – Optional, path to the train set

• test_path (str) – Optional, path to the test set

• val_path (str) – Optional, path to the validation set

• _id (str) – Optional, identifier for multiple datasets

• read_func (callable) – Optional, function used for reading data, default pd.
read_csv

• read_kwargs – Other keyword arguments for applying to the read_func

DataReader.train(self)
Returns the train set.

DataReader.test(self)
Returns the test set.

DataReader.val(self)
Returns the validation set.

Basic Examples

By default, pandas.read_csv will be used to read csv datasets, whose path are assigned when initializing the
DataReader object. You can also assign the parameters for read_csv when initializing.

>>> from Lutil.dataIO import DataReader

>>> reader = DataReader("path/to/train.csv",
... "path/to/test.csv",
... "path/to/val.csv", index_col=1)

>>> train = reader.train()

This is equivalent to:

>>> train = pd.read_csv("path/to/train.csv", index_col=1)

Likewise, you can also call

14 Chapter 1. Assist small-scale machine learning.
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>>> test = reader.test()
>>> val = reader.val()

which are equivalent to:

>>> test = pd.read_csv("path/to/test.csv", index_col=1)
>>> val = pd.read_csv("path/to/val.csv", index_col=1)

Ever since you have initialized one instance, you can completely forget about the object and all parameter configura-
tions. In the same runtime, even in other files, this will be able to retrieve the train set as before.

>>> DataReader().train()

It is the same for the test set and the validation set.

Accessing Multiple Datasets

Most small-scale machine learning tasks only have one dataset, which is our basic usage. However, if you want to
access multiple datasets, you can assign the _id parameter. This will work accross files as well.

>>> DataReader("path/to/train_1.csv", _id="1", index_col=1)
>>> DataReader("path/to/train_2.csv", _id="2", nrows=500)

>>> train_1 = DataReader(_id="1").train()
>>> # Equivalent to
>>> train_1 = pd.read_csv("path/to/train_1.csv", index_col=1)

>>> train_2 = DataReader(_id="2").train()
>>> # Equivalent to
>>> train_2 = pd.read_csv("path/to/train_2.csv", nrows=500)

Using other Reading Function

If the data source is not a csv file, and you want to read them with other functions, you can pass a callable to the
read_func parameter.

>>> import pandas as pd
>>> reader = DataReader("path/to/train.json", read_func=pd.read_json)
>>> train = reader.train()

This is equivalent to:

>>> train = pd.read_json("path/to/train.json")

Applying other keyword parameter is the same as before, pass them when initializing the DataReader object and it
will be passed when actually calling the read_func.

As you see, this will only work if the dataset is stored in one file, and the read_func take the path as the first
parameter.

Changelog

1.2. Key Features 15
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v0.1.10

• Fix the bug that InlineCheckpoint cannot handle empty produce list

v0.1.9

• Fix the bug that the Exceptions in the InlineCheckpoint still results in the produce variables to be cached

v0.1.8

• Fix a bug when the line number cannot be correctly identified in jupyter notebook

v0.1.7

• Fix a corner case, where the numpy array created from pd.DataFrame.to_numpy() cannot be properly hashed.

v0.1.6

• Support pandas DataFrame with initially un-hashable elements as a parameter.

v0.1.5

• Bug fixes

• Now the file name of Autosaver.save is optional, will use datetime.datetime.now().
strftime(r"%m%d-%H%M%S") + ".csv" if left empty

• Add __recompute__ functionality for checkpoint

v0.1.4

• Fix requirements.txt for Windows environment

v0.1.3

• Add support for two AutoSaver cases

– Fix: when a column header in the example file is empty, the output csv will no longer have an
Unnamed: 0 as header.

– Feature: now it can handle ruleless indexes, as long as the example csv and the to-submit object has
the same number of rows

v0.1.2

• Fix dependencies in requirements.txt and setup.py

• Use better way to hash a pandas object

16 Chapter 1. Assist small-scale machine learning.
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v0.1.1

• Fix changelog in the documentation (v0.0.1 -> v0.1.0)

• Fix fields in the setup.py

• More badges in the readme and documentation

• No code change

v0.1.0

• Initialize the checkpoints module

– InlineCheckpoint

– checkpoint

• Initialize the dataIO module

– AutoSaver

– DataReader

1.2. Key Features 17
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